3.2.83 \(\int \frac {1}{x \sqrt {\tan (a+b \log (c x^n))}} \, dx\) [183]

3.2.83.1 Optimal result
3.2.83.2 Mathematica [A] (verified)
3.2.83.3 Rubi [A] (verified)
3.2.83.4 Maple [A] (verified)
3.2.83.5 Fricas [C] (verification not implemented)
3.2.83.6 Sympy [F]
3.2.83.7 Maxima [F]
3.2.83.8 Giac [F(-1)]
3.2.83.9 Mupad [B] (verification not implemented)

3.2.83.1 Optimal result

Integrand size = 19, antiderivative size = 176 \[ \int \frac {1}{x \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}} \, dx=-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2} b n}+\frac {\arctan \left (1+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2} b n}-\frac {\log \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+\tan \left (a+b \log \left (c x^n\right )\right )\right )}{2 \sqrt {2} b n}+\frac {\log \left (1+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+\tan \left (a+b \log \left (c x^n\right )\right )\right )}{2 \sqrt {2} b n} \]

output
1/2*arctan(-1+2^(1/2)*tan(a+b*ln(c*x^n))^(1/2))/b/n*2^(1/2)+1/2*arctan(1+2 
^(1/2)*tan(a+b*ln(c*x^n))^(1/2))/b/n*2^(1/2)-1/4*ln(1-2^(1/2)*tan(a+b*ln(c 
*x^n))^(1/2)+tan(a+b*ln(c*x^n)))/b/n*2^(1/2)+1/4*ln(1+2^(1/2)*tan(a+b*ln(c 
*x^n))^(1/2)+tan(a+b*ln(c*x^n)))/b/n*2^(1/2)
 
3.2.83.2 Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 142, normalized size of antiderivative = 0.81 \[ \int \frac {1}{x \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}} \, dx=\frac {-2 \arctan \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )+2 \arctan \left (1+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )-\log \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+\tan \left (a+b \log \left (c x^n\right )\right )\right )+\log \left (1+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+\tan \left (a+b \log \left (c x^n\right )\right )\right )}{2 \sqrt {2} b n} \]

input
Integrate[1/(x*Sqrt[Tan[a + b*Log[c*x^n]]]),x]
 
output
(-2*ArcTan[1 - Sqrt[2]*Sqrt[Tan[a + b*Log[c*x^n]]]] + 2*ArcTan[1 + Sqrt[2] 
*Sqrt[Tan[a + b*Log[c*x^n]]]] - Log[1 - Sqrt[2]*Sqrt[Tan[a + b*Log[c*x^n]] 
] + Tan[a + b*Log[c*x^n]]] + Log[1 + Sqrt[2]*Sqrt[Tan[a + b*Log[c*x^n]]] + 
 Tan[a + b*Log[c*x^n]]])/(2*Sqrt[2]*b*n)
 
3.2.83.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.97, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.632, Rules used = {3039, 3042, 3957, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}} \, dx\)

\(\Big \downarrow \) 3039

\(\displaystyle \frac {\int \frac {1}{\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3957

\(\displaystyle \frac {\int \frac {1}{\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )} \left (\tan ^2\left (a+b \log \left (c x^n\right )\right )+1\right )}d\tan \left (a+b \log \left (c x^n\right )\right )}{b n}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 \int \frac {1}{\tan ^2\left (a+b \log \left (c x^n\right )\right )+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{b n}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {2 \left (\frac {1}{2} \int \frac {1-\tan \left (a+b \log \left (c x^n\right )\right )}{\tan ^2\left (a+b \log \left (c x^n\right )\right )+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+\frac {1}{2} \int \frac {\tan \left (a+b \log \left (c x^n\right )\right )+1}{\tan ^2\left (a+b \log \left (c x^n\right )\right )+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{b n}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (\frac {1}{2} \int \frac {1-\tan \left (a+b \log \left (c x^n\right )\right )}{\tan ^2\left (a+b \log \left (c x^n\right )\right )+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{\tan \left (a+b \log \left (c x^n\right )\right )-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+\frac {1}{2} \int \frac {1}{\tan \left (a+b \log \left (c x^n\right )\right )+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )\right )}{b n}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (\frac {1}{2} \int \frac {1-\tan \left (a+b \log \left (c x^n\right )\right )}{\tan ^2\left (a+b \log \left (c x^n\right )\right )+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+\frac {1}{2} \left (\frac {\int \frac {1}{-\tan \left (a+b \log \left (c x^n\right )\right )-1}d\left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\tan \left (a+b \log \left (c x^n\right )\right )-1}d\left (\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{\sqrt {2}}\right )\right )}{b n}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (\frac {1}{2} \int \frac {1-\tan \left (a+b \log \left (c x^n\right )\right )}{\tan ^2\left (a+b \log \left (c x^n\right )\right )+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2}}\right )\right )}{b n}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{\tan \left (a+b \log \left (c x^n\right )\right )-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{\tan \left (a+b \log \left (c x^n\right )\right )+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2}}\right )\right )}{b n}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{\tan \left (a+b \log \left (c x^n\right )\right )-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{\tan \left (a+b \log \left (c x^n\right )\right )+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2}}\right )\right )}{b n}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{\tan \left (a+b \log \left (c x^n\right )\right )-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}{\tan \left (a+b \log \left (c x^n\right )\right )+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2}}\right )\right )}{b n}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (\frac {\log \left (\tan \left (a+b \log \left (c x^n\right )\right )+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan \left (a+b \log \left (c x^n\right )\right )-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{2 \sqrt {2}}\right )\right )}{b n}\)

input
Int[1/(x*Sqrt[Tan[a + b*Log[c*x^n]]]),x]
 
output
(2*((-(ArcTan[1 - Sqrt[2]*Sqrt[Tan[a + b*Log[c*x^n]]]]/Sqrt[2]) + ArcTan[1 
 + Sqrt[2]*Sqrt[Tan[a + b*Log[c*x^n]]]]/Sqrt[2])/2 + (-1/2*Log[1 - Sqrt[2] 
*Sqrt[Tan[a + b*Log[c*x^n]]] + Tan[a + b*Log[c*x^n]]]/Sqrt[2] + Log[1 + Sq 
rt[2]*Sqrt[Tan[a + b*Log[c*x^n]]] + Tan[a + b*Log[c*x^n]]]/(2*Sqrt[2]))/2) 
)/(b*n)
 

3.2.83.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3039
Int[u_, x_Symbol] :> With[{lst = FunctionOfLog[Cancel[x*u], x]}, Simp[1/lst 
[[3]]   Subst[Int[lst[[1]], x], x, Log[lst[[2]]]], x] /;  !FalseQ[lst]] /; 
NonsumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 
3.2.83.4 Maple [A] (verified)

Time = 0.85 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.69

method result size
derivativedivides \(\frac {\sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}+\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}{1-\sqrt {2}\, \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}+\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}\right )\right )}{4 n b}\) \(122\)
default \(\frac {\sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}+\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}{1-\sqrt {2}\, \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}+\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}\right )\right )}{4 n b}\) \(122\)

input
int(1/x/tan(a+b*ln(c*x^n))^(1/2),x,method=_RETURNVERBOSE)
 
output
1/4/n/b*2^(1/2)*(ln((1+2^(1/2)*tan(a+b*ln(c*x^n))^(1/2)+tan(a+b*ln(c*x^n)) 
)/(1-2^(1/2)*tan(a+b*ln(c*x^n))^(1/2)+tan(a+b*ln(c*x^n))))+2*arctan(1+2^(1 
/2)*tan(a+b*ln(c*x^n))^(1/2))+2*arctan(-1+2^(1/2)*tan(a+b*ln(c*x^n))^(1/2) 
))
 
3.2.83.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 268, normalized size of antiderivative = 1.52 \[ \int \frac {1}{x \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}} \, dx=\frac {1}{2} \, \left (-\frac {1}{b^{4} n^{4}}\right )^{\frac {1}{4}} \log \left (b n \left (-\frac {1}{b^{4} n^{4}}\right )^{\frac {1}{4}} + \sqrt {\frac {\sin \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right )}{\cos \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) + 1}}\right ) + \frac {1}{2} i \, \left (-\frac {1}{b^{4} n^{4}}\right )^{\frac {1}{4}} \log \left (i \, b n \left (-\frac {1}{b^{4} n^{4}}\right )^{\frac {1}{4}} + \sqrt {\frac {\sin \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right )}{\cos \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) + 1}}\right ) - \frac {1}{2} i \, \left (-\frac {1}{b^{4} n^{4}}\right )^{\frac {1}{4}} \log \left (-i \, b n \left (-\frac {1}{b^{4} n^{4}}\right )^{\frac {1}{4}} + \sqrt {\frac {\sin \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right )}{\cos \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) + 1}}\right ) - \frac {1}{2} \, \left (-\frac {1}{b^{4} n^{4}}\right )^{\frac {1}{4}} \log \left (-b n \left (-\frac {1}{b^{4} n^{4}}\right )^{\frac {1}{4}} + \sqrt {\frac {\sin \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right )}{\cos \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) + 1}}\right ) \]

input
integrate(1/x/tan(a+b*log(c*x^n))^(1/2),x, algorithm="fricas")
 
output
1/2*(-1/(b^4*n^4))^(1/4)*log(b*n*(-1/(b^4*n^4))^(1/4) + sqrt(sin(2*b*n*log 
(x) + 2*b*log(c) + 2*a)/(cos(2*b*n*log(x) + 2*b*log(c) + 2*a) + 1))) + 1/2 
*I*(-1/(b^4*n^4))^(1/4)*log(I*b*n*(-1/(b^4*n^4))^(1/4) + sqrt(sin(2*b*n*lo 
g(x) + 2*b*log(c) + 2*a)/(cos(2*b*n*log(x) + 2*b*log(c) + 2*a) + 1))) - 1/ 
2*I*(-1/(b^4*n^4))^(1/4)*log(-I*b*n*(-1/(b^4*n^4))^(1/4) + sqrt(sin(2*b*n* 
log(x) + 2*b*log(c) + 2*a)/(cos(2*b*n*log(x) + 2*b*log(c) + 2*a) + 1))) - 
1/2*(-1/(b^4*n^4))^(1/4)*log(-b*n*(-1/(b^4*n^4))^(1/4) + sqrt(sin(2*b*n*lo 
g(x) + 2*b*log(c) + 2*a)/(cos(2*b*n*log(x) + 2*b*log(c) + 2*a) + 1)))
 
3.2.83.6 Sympy [F]

\[ \int \frac {1}{x \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}} \, dx=\int \frac {1}{x \sqrt {\tan {\left (a + b \log {\left (c x^{n} \right )} \right )}}}\, dx \]

input
integrate(1/x/tan(a+b*ln(c*x**n))**(1/2),x)
 
output
Integral(1/(x*sqrt(tan(a + b*log(c*x**n)))), x)
 
3.2.83.7 Maxima [F]

\[ \int \frac {1}{x \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}} \, dx=\int { \frac {1}{x \sqrt {\tan \left (b \log \left (c x^{n}\right ) + a\right )}} \,d x } \]

input
integrate(1/x/tan(a+b*log(c*x^n))^(1/2),x, algorithm="maxima")
 
output
integrate(1/(x*sqrt(tan(b*log(c*x^n) + a))), x)
 
3.2.83.8 Giac [F(-1)]

Timed out. \[ \int \frac {1}{x \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}} \, dx=\text {Timed out} \]

input
integrate(1/x/tan(a+b*log(c*x^n))^(1/2),x, algorithm="giac")
 
output
Timed out
 
3.2.83.9 Mupad [B] (verification not implemented)

Time = 29.13 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.34 \[ \int \frac {1}{x \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}} \, dx=-\frac {{\left (-1\right )}^{1/4}\,\mathrm {atan}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {tan}\left (a+b\,\ln \left (c\,x^n\right )\right )}\right )\,1{}\mathrm {i}}{b\,n}-\frac {{\left (-1\right )}^{1/4}\,\mathrm {atanh}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {tan}\left (a+b\,\ln \left (c\,x^n\right )\right )}\right )\,1{}\mathrm {i}}{b\,n} \]

input
int(1/(x*tan(a + b*log(c*x^n))^(1/2)),x)
 
output
- ((-1)^(1/4)*atan((-1)^(1/4)*tan(a + b*log(c*x^n))^(1/2))*1i)/(b*n) - ((- 
1)^(1/4)*atanh((-1)^(1/4)*tan(a + b*log(c*x^n))^(1/2))*1i)/(b*n)